

Unmanned Aircraft System Flight Test Approach Supporting the Development of Regulatory Recommendations for Integration with the National Airspace System

> Michael Vincent NASA Langley Research Center

> > Kevin Monk Mauricio Rivas Clint St John

UAS INTEGRATION IN THE NAS



- UAS Integration in the NAS Project
- Flight Test 3
- Flight Test 4
- Flight Test Series 6 Overview and Objectives
- RADAR Characterization and Scripted Encounters Overview
- Full Mission Overview
- RADAR Characterization Results
- Scripted Encounters Results
- Full Mission Data Analysis



- Conrad Rorie
- Garrett Sadler
- Casey Smith
- Jillian Keeler
- Gilbert Wu
- Wei-Ching Wang



- NASA UAS Integration in the NAS Project
  - Part of NASA Integrated Aviation Systems Program
  - Supports RTCA SC-228 in defining DAA standards
  - Investigates and validates multiple facets of DAA for UAS
- Detect and Avoid (DAA)
  - Replaces "See and Avoid" for UAS
  - ADS-B, RADAR, Active Surveillance instead of human eyes
  - Quantifiable definition of "Well-Clear"
- Phase 1 "En-Route" Minimum Operational Performance Standards (MOPS)
  - Large UAS
  - Transiting through Class E airspace
- Phase 2 Topics
  - DAA in the terminal area
  - Low Size Weight and Power (Low SWaP) operations below 10,000ft



- Objectives
  - Validate simulation results from DAA modeling
  - Investigate DAA/Collision Avoidance interoperability
  - Expand test architecture
- Approach
  - Scripted encounters between Ikhana and manned aircraft
  - Air-to-air RADAR (ATAR), ADS-B, Mode-C surveillance sensors
  - Sensor fusion tracker
  - DAA algorithms generate alerting and guidance
    - Stratway+
    - JADEM
    - CPDS



NASA

870

- Results
  - Unsteady alerting and guidance observed with noncooperative sensors
    - Emphasized need for handling of uncertainty for non-cooperative sensors
    - Led to hysteresis, uncertainty, track generation requirements for RTCA DO-365
  - Alerting ranges for high-speed (400 kts) and maneuvering intruders
  - Refined systems under test
    - JADEM and CPDS improvements
    - Stratway+ developed into DAIDALUS
    - Honeywell sensor fusion tracker
    - State filtering for GA-ASI ATAR

RONG FLIGHT RESEARCH CENTER



- Objectives
  - Validate stressing cases for DAA MOPS – low speed, small RCS, high vertical closure rate, multiple intruders
  - Validate DAA/CA interoperability
  - Validate well-clear recovery guidance
  - Validate reference test vectors for DO-365
  - Validate alert timing
- Approach
  - Scripted encounters between Ikhana and KingAir, Gulfstream, T-34C, TG-14
  - JADEM, CPDS DAIDALUS as DAA systems
  - Test cards developed for NASA Ames & Langley, GA-ASI, Honeywell, RTCA



- Results  $\bullet$ 
  - Candidate MOPS alert times sufficient for UAS to remain well-clear
  - Well-clear recovery guidance of limited utility with ATAR
  - Discovered cases where TCAS RA occurs before loss of DAA well-clear
  - Test vectors incorporated into DO-365, DO-366
  - DAIDALUS became reference DAA implementation for DO-365



300 290 280

0 Ez 0 92 052



- Investigate Low Size, Weight, and Power (SWaP) UAS DAA operations below 10,000 ft
  - 3 Phases
    - RADAR Characterization Measure the performance of a Low SWaP non-cooperative sensor
      - Sensor accuracy, range, azimuth, elevation
    - Scripted Encounters Validate the performance of the non-cooperative DWC
      - Alerting and guidance stability, maneuver effectiveness
    - Full Mission Measure the human response data in a simulated National Airspace System (scenario)
      - Pilot response time, separation between aircraft, subjective acceptability
  - Conducted between July and November 2019







- DAA Well-Clear (DWC) is lost when the separation between a UAS and another aircraft is within the vertical, horizontal, and time thresholds defined in the DAA MOPS
  - Candidate Non-Cooperative DWC:
    - Vertical (*h*\*) = 450 ft.
    - Horizontal (*HMD*\*) = 2200 ft.
    - Time  $(\tau^*_{mod}) = 0$  seconds
- An alert time to DWC is also calculated to allow the human pilot to maneuver
  - Corrective Alert: Pilot has time to contact
    ATC to negotiate DAA maneuver
    Warning Alert: Pilot must maneuver
  - Warning Alert: Pilot must maneuver immediately to avoid losing well-clear
- A DAA display provides the pilot with maneuver guidance in the form of heading and altitude "bands"
  - Pilot maneuvers so that the UAS heading or altitude is outside the bands





# NASC TigerShark XP

- Manufacturer: Navmar Applied Sciences Corp
- UAS Type: DoD Group 3
- Wingspan: 22 ft.
- Endurance: 8-12 hour
- Max speed: 80 KTAS
- Radome nose fabricated to house Low Size, Weight, and Power (SWaP) non-cooperative RADAR sensor – Honeywell "DAPA-Lite"
- Addition of exhaust injection smoke system for visual ID from manned aircraft
- Mobile Operations Center (MOC) houses internal pilot using Piccolo Control Center
- MOC linked to Research Ground Control Station (RGCS) where DAA system was housed







- VSCS
  - Displays DAA alerting and guidance
  - Pilot GUI for control of vehicle
  - Developed by AFRL
- Live, Virtual and Constructive Distributed Environment (LVC-DE)
  - Connects geographically distant assets
  - Connects live assets with virtual and constructive elements
  - Combines environmental flight with simulated environment
  - FT6 simulated a sector within Oakland airspace



- **Constructive Traffic**: Simulated traffic on scripted route, no human intervention
- Virtual Traffic: Simulated traffic controlled by pseudo pilots
- Live Traffic: UAS and manned "intruder" aircraft



# **Full Mission Concept of Operations**



- **Subject Pilot**: Non-NASA UAS pilot who is naïve to conditions of test encounters
- Virtual ATC: Trained controller managing the UAS and all cooperative traffic in the simulated sector



# FT6 Full Mission



- 4 with Low SWaP non-cooperative sensor
- 2 with cooperative sensor (ADS-B)
- Intruder speeds: 170kts or 100kts
- Encounter geometry: Head-on, 90° crossing, 45° crossing
- Encounter locations can shift

## • 7 Subject pilots

- Active military
- UAV type certification
  - Fixed wing
  - Previous year experience
- Current FAA medical or equivalent
  - Corrected to normal vision
- Full color perception
- Private Pilot Certificate
- No previous UAS Integration in the NAS HITL activities





# Full Mission Subject Training and Metrics

- Training
  - Day before flight
    - Intro to FT6, responsibilities, vehicle overview
    - VSCS Interface: information display, sending commands, vehicle behavior
    - DAA System: alert meaning, guidance, surveillance system
    - Mission: airspace, ATC, secondary tasks
    - Simulation practice
  - Morning of flight
    - Refresher practice of simulated encounters
- Data Collected
  - Separation between UAS and live traffic
  - Pilot response: ATC coordination and alert reaction times
  - Pilot subjective workload and system acceptability
  - Questionnaires:
    - After encounter
    - After circuit
    - After simulation
  - Debriefing interview





# **FULL MISSION RESULTS**



- Slower responses to Correctives compared to HITL results
  - Higher proportion of Corrective alerts in FT6, longer average alert duration
  - More pilots on common voice frequency
- RT distribution (non-cooperative traffic)
  - Corrective at First Alert: 80% of RTs within 15sec (Max = 20sec)
  - Warning at First Alert: 80% of RTs within 10sec (Max = 11sec)



Aircraft RT (non-coops)

Aircraft response time – time elapsed from alert to first maneuver upload



# **ATC Coordination**

- ATC coordination rates nearly doubled in FT6 compared to HITL
  - More time to receive ATC approval before Warning onset (~12 sec)
    - Variability in closure rates due to changing atmospheric conditions
  - Warning onset typically occurred during transmission
    - On average, pre-approved maneuver uploads came 14 seconds after first alert





- Zero Losses of DWC with either equipage
  - 'Fast' intruders accounted for the lowest closest points of approach
    - Closest call: 2577ft. Horz. CPA (Fast Head On, 27sec-to-LoDWC @ 1st alert)
      - Unintentional button click delayed pilot's response
  - Encounters with the cooperative sensor predictably had higher closest points of approach
    - Due to unrestricted detection range





 Pilots felt that they were able to achieve sufficient separation in all four non-cooperative encounters, and found the DAA guidance bands useful

I was able to achieve sufficient separation from the intruder aircraft(s) using the alerting and guidance in this encounter:

1 = Strongly Disagree, 5 = Strongly Agree



The DAA guidance bands were useful for solving this encounter:

1 = Strongly Disagree, 5 = Strongly Agree





## Post-Test

- Majority thought alerting provided enough time to initiate maneuver in most cases
  - Slower aircraft intruding were okay, faster ones were "pushing it"
- Mixed responses on **timing to contact ATC** at corrective alert level
  - Pilots reported instances where encounter immediately elevated to Warning while attempting coordination
  - "Sometimes frequency congestion didn't allow time to coordinate"



### Did Corrective alerting provide enough time to:



- Intruder A/C fell out of FOR during <u>26 of 27 avoidance events</u>
  - Smaller detection range -> larger turns required for resolution
    - Stresses 110° azimuth limit, especially at fast closure rates
    - Wider turns observed in live flight compared to HITL
      - Pilots added buffer to target headings to account for crosswinds
  - DAA information remained absent for at least 13 seconds (max = 87sec)
    - Half never re-appeared on display
    - Occasionally, symbology disappeared before Clear-of-Conflict
  - 59% of intruders reached CPA while outside of FOR
    - Lost more separation without conflicting traffic in sight
    - Always diverged in time to avoid LoDWC or early return to course
      - Pilots spent more time off course than previous HITLs (63sec)

| Study | Azimuth Drops before CoC | Avg. Turn Size (Fast Intruders) |
|-------|--------------------------|---------------------------------|
| FT6   | 11/27 <b>(41%)</b>       | 128deg                          |
| HITL  | 9/36 <b>(25%)</b>        | 90 deg                          |



# Summary

- Scripted Encounters
  - For maneuvers executed in a timely fashion more than half of these maneuvers effectively resolved conflicts
    - A 3.5 nmi surveillance range achieved a higher success rate (~70%) than 2.5 and 2.0 nmi (50%)
  - For ineffective encounters, the lead contributing factors are
    - Pilots' decision
    - Change of Intruder's velocity
  - It may be beneficial for pilots to add more maneuver "buffer" beyond the heading bands to the target heading
    - Maneuvers are more effective when buffers are larger
- Full Mission
  - Pilot Performance (compared to HITL)
    - Zero Losses of DAA Well Clear
      - HITL: 1 LoDWC due to Early Return to Course
    - Slower response times, but more ATC-approved maneuvers
      - More caution alerting due to slower ownship speeds
  - Pilots were still often unable to respond to Corrective alerts
    - All but two encounters reached warning-level status
  - Pilot Feedback
    - Low workload ratings overall
      - Moderate increases for fast-closure encounters
    - Sufficiency of DAA guidance bands rated favorably
      - Corrective alert timing inadequate for ATC coordination



- High winds impacted flight operations with the Tigershark
  - Low ground speeds difficult to set up encounters
  - Challenging launch and recovery
  - Survey multiple launch and recovery sites as best practice cross winds
- Multiple flight plans provided flexibility
  - Allowed test to continue when part of airspace was unavailable
  - Allowed multiple encounter attempts during full mission
- Rehearsal for full mission a necessity
  - Full mission procedures needed practice from the entire team to lock down
- Visual conspicuity an issue for vehicle of this size
  - Smoke system for visual identification was of limited utility
  - Visibility of smoke depended on weather overcast skies and haze hampered visual ID



# Special Thanks To....

#### • AFRC

- Mike Marston
- Alex Flock
- Sam Kim
- Robert Navarro
- Doug Wada
- Arya Abrego
- Jamie Turner
- Rashmi Vidyasagar
- Eleonor Barron
- Scott Howe
- Derek Abramson
- Kassidy Mclaughlin
- Daniel Surgeon
- Rocky Garcia
- Hernon Posada
- Victor Loera
- Justin Hall
- Duc Tran
- ARC
  - Mohamad Refai
  - Ty Hoang
  - Wayne Bridges
  - Zach Roberts
  - Andrew Cone
  - Elvia Valenzuela
  - Jay Shivlely

- LaRC
  - Ivan Clarke
- NASC
  - Stephen Hamilton
  - Charles Zera
  - Bryan Hazlett
  - Tia Williams
  - Emily Fox
- Honeywell
  - Jamal Haque
  - Marc Pos
  - John Ihlen
  - Eric Euteneuer





























## BACKUP